Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Rev Genomics Hum Genet ; 23: 301-329, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35655331

ABSTRACT

The Joubert syndrome (JS), Meckel syndrome (MKS), and nephronophthisis (NPH) ciliopathy spectrum could be the poster child for advances and challenges in Mendelian human genetics over the past half century. Progress in understanding these conditions illustrates many core concepts of human genetics. The JS phenotype alone is caused by pathogenic variants in more than 40 genes; remarkably, all of the associated proteins function in and around the primary cilium. Primary cilia are near-ubiquitous, microtubule-based organelles that play crucial roles in development and homeostasis. Protruding from the cell, these cellular antennae sense diverse signals and mediate Hedgehog and other critical signaling pathways. Ciliary dysfunction causes many human conditions termed ciliopathies, which range from multiple congenital malformations to adult-onset single-organ failure. Research on the genetics of the JS-MKS-NPH spectrum has spurred extensive functional work exploring the broadly important role of primary cilia in health and disease. This functional work promises to illuminate the mechanisms underlying JS-MKS-NPH in humans, identify therapeutic targets across genetic causes, and generate future precision treatments.


Subject(s)
Abnormalities, Multiple , Ciliopathies , Eye Abnormalities , Polycystic Kidney Diseases , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Cerebellum/abnormalities , Cerebellum/metabolism , Cerebellum/pathology , Child , Cilia/genetics , Cilia/metabolism , Cilia/pathology , Ciliary Motility Disorders , Ciliopathies/genetics , Ciliopathies/metabolism , Ciliopathies/pathology , Encephalocele , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Eye Abnormalities/pathology , Hedgehog Proteins/metabolism , Humans , Kidney Diseases, Cystic , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/metabolism , Polycystic Kidney Diseases/pathology , Retina/abnormalities , Retina/metabolism , Retina/pathology , Retinitis Pigmentosa
2.
HGG Adv ; 2(1)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33791682

ABSTRACT

The Joubert-Meckel syndrome spectrum is a continuum of recessive ciliopathy conditions caused by primary cilium dysfunction. The primary cilium is a microtubule-based, antenna-like organelle that projects from the surface of most human cell types, allowing them to respond to extracellular signals. The cilium is partitioned from the cell body by the transition zone, a known hotspot for ciliopathy-related proteins. Despite years of Joubert syndrome (JBTS) gene discovery, the genetic cause cannot be identified in up to 30% of individuals with JBTS, depending on the cohort, sequencing method, and criteria for pathogenic variants. Using exome and targeted sequencing of 655 families with JBTS, we identified three individuals from two families harboring biallelic, rare, predicted-deleterious missense TMEM218 variants. Via MatchMaker Exchange, we identified biallelic TMEM218 variants in four additional families with ciliopathy phenotypes. Of note, four of the six families carry missense variants affecting the same highly conserved amino acid position 115. Clinical features included the molar tooth sign (N = 2), occipital encephalocele (N = 5, all fetuses), retinal dystrophy (N = 4, all living individuals), polycystic kidneys (N = 2), and polydactyly (N = 2), without liver involvement. Combined with existing functional data linking TMEM218 to ciliary transition zone function, our human genetic data make a strong case for TMEM218 dysfunction as a cause of ciliopathy phenotypes including JBTS with retinal dystrophy and Meckel syndrome. Identifying all genetic causes of the Joubert-Meckel spectrum enables diagnostic testing, prognostic and recurrence risk counseling, and medical monitoring, as well as work to delineate the underlying biological mechanisms and identify targets for future therapies.

3.
J Clin Invest ; 130(8): 4423-4439, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32453716

ABSTRACT

Joubert syndrome (JBTS) is a recessive neurodevelopmental ciliopathy characterized by a pathognomonic hindbrain malformation. All known JBTS genes encode proteins involved in the structure or function of primary cilia, ubiquitous antenna-like organelles essential for cellular signal transduction. Here, we used the recently identified JBTS-associated protein armadillo repeat motif-containing 9 (ARMC9) in tandem-affinity purification and yeast 2-hybrid screens to identify a ciliary module whose dysfunction underlies JBTS. In addition to the known JBTS-associated proteins CEP104 and CSPP1, we identified coiled-coil domain containing 66 (CCDC66) and TOG array regulator of axonemal microtubules 1 (TOGARAM1) as ARMC9 interaction partners. We found that TOGARAM1 variants cause JBTS and disrupt TOGARAM1 interaction with ARMC9. Using a combination of protein interaction analyses, characterization of patient-derived fibroblasts, and analysis of CRISPR/Cas9-engineered zebrafish and hTERT-RPE1 cells, we demonstrated that dysfunction of ARMC9 or TOGARAM1 resulted in short cilia with decreased axonemal acetylation and polyglutamylation, but relatively intact transition zone function. Aberrant serum-induced ciliary resorption and cold-induced depolymerization in ARMC9 and TOGARAM1 patient cell lines suggest a role for this new JBTS-associated protein module in ciliary stability.


Subject(s)
Abnormalities, Multiple , Armadillo Domain Proteins , Cerebellum/abnormalities , Cilia , Eye Abnormalities , Kidney Diseases, Cystic , Retina/abnormalities , Zebrafish Proteins , Zebrafish , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Acetylation , Animals , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , CRISPR-Cas Systems , Cerebellum/metabolism , Cilia/genetics , Cilia/metabolism , Disease Models, Animal , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Humans , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Peptides/genetics , Peptides/metabolism , Retina/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
5.
Nat Cell Biol ; 19(10): 1178-1188, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28846093

ABSTRACT

Ciliopathies, including nephronophthisis (NPHP), Meckel syndrome (MKS) and Joubert syndrome (JBTS), can be caused by mutations affecting components of the transition zone, a domain near the base of the cilium that controls the protein composition of its membrane. We defined the three-dimensional arrangement of key proteins in the transition zone using two-colour stochastic optical reconstruction microscopy (STORM). NPHP and MKS complex components form nested rings comprised of nine-fold doublets. JBTS-associated mutations in RPGRIP1L or TCTN2 displace certain transition-zone proteins. Diverse ciliary proteins accumulate at the transition zone in wild-type cells, suggesting that the transition zone is a waypoint for proteins entering and exiting the cilium. JBTS-associated mutations in RPGRIP1L disrupt SMO accumulation at the transition zone and the ciliary localization of SMO. We propose that the disruption of transition-zone architecture in JBTS leads to a failure of SMO to accumulate at the transition zone and cilium, disrupting developmental signalling in JBTS.


Subject(s)
Abnormalities, Multiple/pathology , Cerebellum/abnormalities , Cilia/pathology , Ciliopathies/pathology , Eye Abnormalities/pathology , Kidney Diseases, Cystic/pathology , Microscopy, Fluorescence/methods , Retina/abnormalities , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adolescent , Adult , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Cerebellum/metabolism , Cerebellum/pathology , Child , Cilia/metabolism , Ciliopathies/genetics , Ciliopathies/metabolism , Cytoskeletal Proteins , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Female , Genetic Predisposition to Disease , Humans , Image Processing, Computer-Assisted , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mutation , Patched-1 Receptor/genetics , Patched-1 Receptor/metabolism , Phenotype , Retina/metabolism , Retina/pathology , Signal Transduction , Smoothened Receptor/genetics , Smoothened Receptor/metabolism , Stochastic Processes , Young Adult
6.
Am J Hum Genet ; 101(1): 23-36, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28625504

ABSTRACT

Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterized by hypotonia, ataxia, abnormal eye movements, and variable cognitive impairment. It is defined by a distinctive brain malformation known as the "molar tooth sign" on axial MRI. Subsets of affected individuals have malformations such as coloboma, polydactyly, and encephalocele, as well as progressive retinal dystrophy, fibrocystic kidney disease, and liver fibrosis. More than 35 genes have been associated with JS, but in a subset of families the genetic cause remains unknown. All of the gene products localize in and around the primary cilium, making JS a canonical ciliopathy. Ciliopathies are unified by their overlapping clinical features and underlying mechanisms involving ciliary dysfunction. In this work, we identify biallelic rare, predicted-deleterious ARMC9 variants (stop-gain, missense, splice-site, and single-exon deletion) in 11 individuals with JS from 8 families, accounting for approximately 1% of the disorder. The associated phenotypes range from isolated neurological involvement to JS with retinal dystrophy, additional brain abnormalities (e.g., heterotopia, Dandy-Walker malformation), pituitary insufficiency, and/or synpolydactyly. We show that ARMC9 localizes to the basal body of the cilium and is upregulated during ciliogenesis. Typical ciliopathy phenotypes (curved body shape, retinal dystrophy, coloboma, and decreased cilia) in a CRISPR/Cas9-engineered zebrafish mutant model provide additional support for ARMC9 as a ciliopathy-associated gene. Identifying ARMC9 mutations as a cause of JS takes us one step closer to a full genetic understanding of this important disorder and enables future functional work to define the central biological mechanisms underlying JS and other ciliopathies.


Subject(s)
Abnormalities, Multiple/genetics , Armadillo Domain Proteins/genetics , Basal Bodies/metabolism , Cerebellum/abnormalities , Ciliopathies/genetics , Eye Abnormalities/genetics , Kidney Diseases, Cystic/genetics , Mutation/genetics , Retina/abnormalities , Zebrafish Proteins/genetics , Zebrafish/genetics , Abnormalities, Multiple/pathology , Animals , Armadillo Domain Proteins/metabolism , Base Sequence , Brain/pathology , Cerebellum/pathology , Cilia/metabolism , Ciliopathies/pathology , Diagnostic Imaging , Exome/genetics , Eye Abnormalities/pathology , Genetic Predisposition to Disease , Humans , Kidney Diseases, Cystic/pathology , Phenotype , Retina/pathology , Sequence Analysis, DNA , Up-Regulation/genetics , Zebrafish Proteins/metabolism
7.
Traffic ; 18(5): 277-286, 2017 05.
Article in English | MEDLINE | ID: mdl-28248449

ABSTRACT

Cilia and eukaryotic flagella are threadlike cell extensions with motile and sensory functions. Their assembly requires intraflagellar transport (IFT), a bidirectional motor-driven transport of protein carriers along the axonemal microtubules. IFT moves ample amounts of structural proteins including tubulin into growing cilia likely explaining its critical role for assembly. IFT continues in non-growing cilia contributing to a variety of processes ranging from axonemal maintenance and the export of non-ciliary proteins to cell locomotion and ciliary signaling. Here, we discuss recent data on cues regulating the type, amount and timing of cargo transported by IFT. A regulation of IFT-cargo interactions is critical to establish, maintain and adjust ciliary length, protein composition and function.


Subject(s)
Cilia/metabolism , Cilia/physiology , Protein Transport/physiology , Proteins/metabolism , Animals , Flagella/metabolism , Flagella/physiology , Humans , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...